Cəfər Əliyevin bloqu

Arxiv

Ana səhifə :: Riyaziyyat :: Həndəsə :: Üçbucaq


Yaranma tarixi:

Sinuslar teoremi

Sinuslar teoremini isbat etməzdən əvvəl bir teorem isbat edək. Bu teorem bizə lazım olacaq.

Teorem: Üçbucağın sahəsi onun istənilən iki tərəfinin uzunluqları ilə bu tərəflər arasında qalan bucağın sinusu hasilinin yarısına bərabərdir.

ABC üçbucağı

İsbatı: $ABC$ üçbucağına nəzər salaq. $A$ bucağının qarşısındakı tərəfi $a$ ilə, $B$ bucağının qarşısındakı tərəfi $b$ ilə, $C$ bucağının qarşısındakı tərəfi isə $c$ ilə işarə edək.

İsbat etməliyik ki,

$S = \dfrac{1}{2} ab \ sin \gamma$

$A$ təpəsindən $a$ tərəfinə hündürlük endirək. Bu hündürlüyü $h$ ilə işarə etsək $\triangle ABC$-nin sahəsi belə tapılar:

$S=\dfrac{1}{2} ah$

İndi $h$ hündürlüyünü tapaq. Sinusun tərifinə görə $sin \gamma = \dfrac{h}{b}$. Deməli, $h=b\sin \gamma$. Bunu sahə düsturunda yerinə yazsaq

$S=\dfrac{1}{2} ab \ sin \gamma$

alarıq. Teorem isbat olundu.

Sinuslar teoremi: Üçbucağın tərəfləri qarşı bucaqların sinusları ilə mütənasibdir.

Sinuslar teoremi

İsbatı: Şəkildəki üçbucağa baxsaq isbat etməliyik ki,

$\dfrac{a}{sin \alpha} = \dfrac{b}{sin\beta}=\dfrac{c}{sin\gamma}$

Yuxarıda isbat etdiyimiz teoremə görə

$S=\dfrac{1}{2} bc \ sin \alpha; \ S=\dfrac{1}{2} ab \ sin \gamma; \ S=\dfrac{1}{2} ac \ sin \beta$

Birinci iki bərabərlikdən alırıq ki,

$\dfrac{1}{2} ab \ sin \gamma = \dfrac{1}{2}bc \ sin \alpha \Rightarrow a \sin \gamma = c\sin\alpha = \dfrac{a}{sin\alpha}=\dfrac{c}{sin\gamma}$

Eynilə ikinci və üçüncü bərabərlikdən də alırıq ki,

$\dfrac{b}{sin\beta}=\dfrac{c}{sin\gamma}$

Bunanla da Sinuslar teoremi isbat olundu.

Digər məqalələr

Kosinuslar teoremi
Üçbucağın istənilən tərəfinin kvadratı, qalan iki tərəfin kvadratları cəmi ilə onların hasilinin iki mislinin aralarındakı bucağın kosinusuna hasilinin fərqinə bərabərdir.

Üçbucaq bərabərsizliyi
Üçbucağın istənilən tərəfi digər iki tərəfin cəmindən kiçikdir. Üçbucağın böyük tərəfi qarşısında böyük bucağı durur. Üçbucağın böyük bucağı qarşısında böyük tərəfi durur.

Median, tənbölən, hündürlük
Üçbucağın medianları bir nöqtədə kəsişib bu kəsişmə nöqtəsində təpədən 2:1 nisbətində bölünür. Üçbucağın tənbölənləri bir nöqtədə kəsişib qarşı tərəfi bitişik tərəflərlə mütənasib hissələrə bölür. Üçbucağın hündürlükləri bir nöqtədə kəsişir.

Pifaqor teoremi
Düzbucaqlı üçbucağın katetlərinin kvadratları cəmi hipotenuzun kvadratına bərabərdir. Bu teoremin 370 müxtəlif isbatı mövcuddur. Burada onlardan 5-i verilib.

Üçbucaqların bərabərlik əlamətləri
İki tərəf və arasındakı buçağı bərabər olan üçbucaqlar bərabərdir. Bir tərəf və ona söykənən bucaqları bərabər olan üçbucaqlar bərabərdir.

Üçbucaq
Üç təpəsi və üç tərəfi olan qapalı həndəsi fiqura üçbucaq deyilir. Üçbucağın təpəsini qarşı tərəfin ortası ilə birləşdirən düz xətt parçasına median deyilir. Üçbucağın təpəsindən qarşı tərəfə endirilən perpendikulyara onun hündürlüyü deyilir. Üçbucağın təpə bucağını yarı bölən xəttə tənbölən deyilir.

Çeva teoremi
İtalyan riyaziyyatçısı və mühəndisi Covanni Çeva XVII-XVIII əsrlərdə yaşamışdır. Çeva teoremi üçbucağın təpələrindən çəkilmiş şüaların bir nöqtədə kəsişməsi üçün zəruri və kafi şərt verir.

Oxşar üçbucaqlar
Əgər bir üçbucağın iki bucağı o biri üçbucağın iki bucağına bərabərdirsə bu üçbucaqlar oxşardır. Əgər bir üçbucağın iki tərəfi uyğun olaraq o biri üçbucağın iki tərəfi ilə mütənasib olub, bu tərəflərin əmələ gətirdiyi bucaqlar bərabərdirsə, bu üçbucaqlar oxşardır. Üç tərəfi mütənasib olan üçbucaqlar oxşardir.

Üçbucağın sahəsinin 8 xassəsi
Əgər iki üçbucağın eyni bucaqları varsa, onların sahələrinin nisbəti bu bucaqları əmələ gətirən tərəflərin hasilinin nisbətinə bərabərdir. Oxşar üçbucaqların sahələrinin nisbəti onların oxşarlıq əmsalının kvadratına bərabərdir.

Üçbucağın xaricinə və daxilinə çəkilmiş çevrələr
Əgər çevrə üçbucağın bütün təpələrindən keçirsə, onda bu çevrə üçbucaq xaricinə çəkilmiş çevrə adlanır. Çevrə üçbucağın bütün tərəflərinə toxunursa, onda ona üçbucaq daxilin çəkilmiş çevrə deyilir. İstənilən üçbucağın xaricinə və daxilinə yeganə çevrə çəkmək olar.

Üçbucağın bucaqlarının cəmi
Üçbucağın daxili bucaqlarının cəmi 180°-yə bərabərdir. Üçbucağın xarici bucağı onunla qonşu olmayan iki daxili bucağın cəminə bərabərdir.

Üçbucaqların həlli
Üçbucağın həlli dedikdə verilmiş 3 element vasitəsilə onun bütün tərəflərinin və bucaqlarının tapılması nəzərdə tutulur. Bu məsələni üç halda araşdıracağıq.

Heron düsturu
Bizim Eranın I əsrində yaşamış İskəndəriyyəli Heron həndəsə, mexanika, hidrostatika və optika ilə məşğul olurdu. Onun verdiyi Heron düsturunun köməyi ilə sahəni üç tərəf vasitəsilə tapmaq mümkündür.

Fales teoremi
Əgər bucağın tərəflərini kəsən xətlər onun bir tərəfində bərabər parçalar ayırırsa, o biri tərəfində də bərabər parçalar ayırır. Bucağın tərəflərini kəsən paralel xətlər onları mütənasib hissələrə bölür.

Düzbucaqlı üçbucaq
Bucaqlardan biri 90° olan üçbucağa düzbucaqlı üçbucaq deyilir. Düzbucaqlı üçbucaqda 30°-li bucaq qarşısındakı katet hipotenuzun yarısına bərabərdir. Düzbucaqlı üçbucağın düz bucaq təpəsindən çəkilən hündürlük onu iki oxşar üçbucağa ayırır.

© Müəllif hüquqları qorunur

Bu saytdakı bütün məqalələr Cəfər N.Əliyev tərəfindən yazılıb. Onlar hər hansı üçüncu şəxs tərəfindən digər resurslarda çap edilərsə mənbə və müəllifin adı göstərilməlidir. Sayt özü həmin şərtlərə əməl edir.