Naviqator


Arxiv

201139
201230
201312
20151
201633
201755
201865
201943

Bu teq üzrə məqalələr: 'triqonometriya'

Əsas triqonometrik bərabərliklər

Bu məqalədə əsas triqonometrik bərabərliklər göstərilir və hər biri ayrı-ayrılıqda izah edilir.

sin(a+b), sin(a-b), cos(a+b), cos(a-b)

$\sin(\alpha+\beta)$, $\sin(\alpha-\beta)$, $\cos(\alpha+\beta)$ və $\cos(\alpha-\beta)$ məktəb triqonometriyasından başlayaraq, sonra da institut kursunda ən çox rast gəlinən triqonometrik düsturlardandır.

Yarım bucağın triqonometrik funksiyaları

Yarım bucağın triqonometrik düsturları ikiqat bucağın kosinusu üçün olan düsturlara əsaslanır.

sin(a)+sin(b), sin(a)-sin(b), cos(a)+cos(b), cos(a)-cos(b)

$\sin \alpha + \sin \beta$, $\sin \alpha-\sin \beta$, $\cos \alpha+\cos \beta$, $\cos \alpha-cos \beta$ cəm və fərqlərini hasil ilə ifadə edək. Bunun üçün $\alpha$ və $\beta$-ya belə bir əvəzləmə aparaq.

Tangenslərin cəmi və hasili

Əgər $\alpha + \beta+ \gamma = \pi$ olarsa bu bərabərlik doğrudur: $\mbox{tg} \alpha + \mbox{tg} \beta + \mbox{tg} \gamma = \mbox{tg} \alpha \ \mbox{tg} \beta \ \mbox{tg} \gamma$

İkiqat və üşqat bucağın triqonometrik funksiyaları

$\sin 2x$, $\cos 2x$, $\mbox{tg} 2x$, $\mbox{ctg} 2x$, $\sin 3x$, $\cos 3x$, $\mbox{tg}3x$, $\mbox{ctg}3x$ ikiqat və üçqat bucaqların triqonometrik düsturlarını çıxarmaq üçün cəmin triqonometrik funksiya düsturlarından istifadə edəcəyik.

tg(a+b), tg(a-b), ctg(a+b), ctg(a-b)

$\mbox{tg}(\alpha+\beta)$, $\mbox{tg}(\alpha-\beta)$, $\mbox{ctg}(\alpha+\beta)$ və $\mbox{ctg}(\alpha-\beta)$ ifadələrini açaraq nisbət şəlində göstərək.

Triqonometrik funksiyaların çevrilmə qaydaları

Əgər triqonometrik funksiyanın arqumenti özündə $n \dfrac {\pi}{2}$ saxlayırsa, yəni bucaq $n \dfrac {\pi}{2} + \alpha$ və ya $n \dfrac {\pi}{2}-\alpha$ şəklində göstərilibsə onda $n$-in tək və cütlüyündən asılı olaraq iki hal mümkündür. Əgər $n$ tək ədəddirsə, onda $n \dfrac {\pi}{2}$-ni arqumentdən götürüb funksiyanı onun "konfunksiyasına" çevirə bilərik.

tg(a)+tg(b), tg(a)-tg(b), ctg(a)+ctg(b), ctg(a)-ctg(b)

$\mbox{tg} \alpha + \mbox{tg}\beta$, $\mbox{tg} \alpha - \mbox{tg}\beta$, $\mbox{ctg} \alpha + \mbox{ctg}\beta$, $\mbox{ctg} \alpha - \mbox{ctg}\beta$ cəm və fərqlərini $\sin$ və $\cos$ nisbəti ilə ifadə edək. Bunun üçün əsas triqonometrik bərabərlikərdən istifadə edəcəyik.