Cəfər Əliyevin bloqu

Arxiv

Ana səhifə :: Riyaziyyat :: Həndəsə :: Üçbucaq


Yaranma tarixi:

Kosinuslar teoremi

üçbucaq  Kosinuslar  

 

Kosinuslar teoremi: Üçbucağın istənilən tərəfinin kvadratı, qalan iki tərəfin kvadratları cəmi ilə onların hasilinin iki mislinin aralarındakı bucağın kosinusuna hasilinin fərqinə bərabərdir.

Kosinuslar teoremi

İsbatı: Şəkildəki üçbucağa baxın. İsbat etməliyik ki,

$a^2=b^2+c^2-2bc \ cos \alpha$

Bu üçbucağın $h$ hündürlüyünü çəksək, həmin hündürlük qarşı $c$ tərəfini iki $c_1$ və $c_2$ parçalarına böləcək. Pifaqor teoreminə görə

$a^2 = h^2 + c_2^2$

Burada $h$ və $c_2$ olmaqla iki məchul var. Yenə də Pifaqor teoreminə görə

$h^2 = b^2 – c_1^2$

$c_1$ isə düzbucaqlı üçbucağın kateti olduğundan kosinusun tərifinə görə

$c_1 = b \cos \alpha$

$h^2$ və $c_1$ üçün tapılmış ifadələri yerinə yazsaq

$a^2 = h^2 +c_2^2 = b^2 – c_1^2 + c_2^2 = b^2 –(b \cos \alpha)^2+c_2^2$

$c_2$ əvəzinə $c_2 = c - c_1 = c - b\ cos \alpha$ yazsaq $c_2$-ni də $c$ vasitəsilə ifadə etmiş oluruq.

$a^2 = b^2 - b^2 cos^2\alpha +(c-b\ cos \alpha)^2 = b^2 - b^2 cos^2\alpha + c^2 - 2bc\ cos \alpha + b^2 cos^2\alpha$

Burada $b^2 cos ^2 \alpha$ islah olunaraq bizə lazım olan düstur alınır.

Digər məqalələr

Üçbucaq bərabərsizliyi
Üçbucağın istənilən tərəfi digər iki tərəfin cəmindən kiçikdir. Üçbucağın böyük tərəfi qarşısında böyük bucağı durur. Üçbucağın böyük bucağı qarşısında böyük tərəfi durur.

Median, tənbölən, hündürlük
Üçbucağın medianları bir nöqtədə kəsişib bu kəsişmə nöqtəsində təpədən 2:1 nisbətində bölünür. Üçbucağın tənbölənləri bir nöqtədə kəsişib qarşı tərəfi bitişik tərəflərlə mütənasib hissələrə bölür. Üçbucağın hündürlükləri bir nöqtədə kəsişir.

Pifaqor teoremi
Düzbucaqlı üçbucağın katetlərinin kvadratları cəmi hipotenuzun kvadratına bərabərdir. Bu teoremin 370 müxtəlif isbatı mövcuddur. Burada onlardan 5-i verilib.

Üçbucaqların bərabərlik əlamətləri
İki tərəf və arasındakı buçağı bərabər olan üçbucaqlar bərabərdir. Bir tərəf və ona söykənən bucaqları bərabər olan üçbucaqlar bərabərdir.

Üçbucaq
Üç təpəsi və üç tərəfi olan qapalı həndəsi fiqura üçbucaq deyilir. Üçbucağın təpəsini qarşı tərəfin ortası ilə birləşdirən düz xətt parçasına median deyilir. Üçbucağın təpəsindən qarşı tərəfə endirilən perpendikulyara onun hündürlüyü deyilir. Üçbucağın təpə bucağını yarı bölən xəttə tənbölən deyilir.

Oxşar üçbucaqlar
Əgər bir üçbucağın iki bucağı o biri üçbucağın iki bucağına bərabərdirsə bu üçbucaqlar oxşardır. Əgər bir üçbucağın iki tərəfi uyğun olaraq o biri üçbucağın iki tərəfi ilə mütənasib olub, bu tərəflərin əmələ gətirdiyi bucaqlar bərabərdirsə, bu üçbucaqlar oxşardır. Üç tərəfi mütənasib olan üçbucaqlar oxşardir.

Sinuslar teoremi
Üçbucağın tərəfləri qarşı bucaqların sinusları ilə mütənasibdir. Bunu isbat etmək üçün isbat etməliyik ki, üçbucağın sahəsi onun ixtiyarı iki tərəfinin uzunluqları hasilinin yarısı ilə bu tərəflər arasında qalan bucağın sinusu hasilinə bərabərdir.

Üçbucağın bucaqlarının cəmi
Üçbucağın daxili bucaqlarının cəmi 180°-yə bərabərdir. Üçbucağın xarici bucağı onunla qonşu olmayan iki daxili bucağın cəminə bərabərdir.

Üçbucaqların həlli
Üçbucağın həlli dedikdə verilmiş 3 element vasitəsilə onun bütün tərəflərinin və bucaqlarının tapılması nəzərdə tutulur. Bu məsələni üç halda araşdıracağıq.

Bərabərtərəfli üçbucaq
Bütün tərəfləri bərabər olan üçbucağa bərabərtərəfli üçbucaq deyilir. Bərabərtərəfli üçbucaqda bütün bucaqlar 60°-dir. Belə üçbucaqlarda median, hündürlüyk və tənbölənlər üst-üstə düşür.

Heron düsturu
Bizim Eranın I əsrində yaşamış İskəndəriyyəli Heron həndəsə, mexanika, hidrostatika və optika ilə məşğul olurdu. Onun verdiyi Heron düsturunun köməyi ilə sahəni üç tərəf vasitəsilə tapmaq mümkündür.

Fales teoremi
Əgər bucağın tərəflərini kəsən xətlər onun bir tərəfində bərabər parçalar ayırırsa, o biri tərəfində də bərabər parçalar ayırır. Bucağın tərəflərini kəsən paralel xətlər onları mütənasib hissələrə bölür.

© Müəllif hüquqları qorunur

Bu saytdakı bütün məqalələr Cəfər N.Əliyev tərəfindən yazılıb. Onlar hər hansı üçüncu şəxs tərəfindən digər resurslarda çap edilərsə mənbə və müəllifin adı göstərilməlidir. Sayt özü həmin şərtlərə əməl edir.